Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

Convection of mixtures in magnetic field

Taktarov N.G.
Equations of mixtures convection and convectional diffusion in a magnetic field had been obtained. The special cases had been examined including the problem solving of mixture convectional motion near vertical plate with the presence of heterogeneous chemical reaction.

1. Вывод уравнений конвекции намагничивающихся смесей. Уравнения движения двух компонентных неэлектропроводных смесей в магнитном поле имеют вид [2,3]:

 

Здесь v¯ - скорость смеси, ρ - плотность смеси,  c - концентрация   первого  компонента  (c= ρ1ρ2) , Sm -энтропия единицы массы смеси, Т температура, ξ1 и ξ2 - химические потенциалы единицы массы для первого и второго компонентов соответственно,  p давление смеси, η и ζ - коэффициенты вязкости смеси, вектор потока тепла, I¯ - вектор потока диффузии  первого компонента, μ= μ (ρ,c,T,H¯) - магнитная проницаемость смеси, H¯ - магнитное поле, g¯ -ускорение свободного падения. Имея в виду вывод уравнений конвекции, вязкой диссипацией  в уравнении притока тепла пренебрегаем [1]. Давление p в уравнении (1.1) записывается в виде:

где P  -давление в отсутствие магнитного поля при заданных значениях плотности, температуры и концентрации. Выражение для потоков:

Здесь  - кинетические коэффициенты, связанные между собой соотношениями взаимности Онзагера

Запишем тождество Гиббса для намагничивающихся смесей [2]:

Здесь G~m - потенциал Гиббса, приходящий ся на единицу массы среды, ξ=ξ1-ξ2; в качестве независимых термодинамических переменных в тождестве (1.4) выбраны c, p, T, H¯. Выражение для V¯ (с,p,T,H) имеет вид:

Здесь  H = |H¯| ; среда предполагается изотропной.

Далее ограничимся случаем несжимаемой среды, уравнение неразрывности будем писать в  виде div v¯= 0 . Из первой формулы (1.1) следует, что в состоянии равновесия выполняется условие:

Подставляя формулу (1.6) в (1.5) будем иметь:

Аналогично (1.7) записывается уравнение для энтропии

Здесь   - удельная теплоемкость при постоянном давлении, концентрации и магнитном поле.

Будем считать, что отклонения величин от некоторых средних значений малы, поэтому в  формулах (1.7) и (1.8) и далее коэффициенты при   будем считать постоянными величинами, соответствующими некоторым средним значениям концентрации c0 , температуры  T0  и магнитного поля  Выражение для потоков и принимают вид:

В формулах (1.9) вместо кинетических коэффициентов L11 , L12 , L22 введены другие параметры:

коэффициент диффузии:

коэффициент теплопроводности:

термодиффузионное отношение:

а также следующие параметры

μ0 и ρ0 постоянные средние значения магнитной проницаемости и плотности. Все коэффициенты при градиентах в формулах (1.9) предполагаются постоянными.

Подставляя формулы (1.9) в третье и четвертое уравнение системы (1.1), будем иметь:

Здесь  - коэффициент    температуропроводности;

В уравнении притока тепла слагаемое, содержащее   δH2 / δt , надо учитывать в случае переменного магнитного поля, например, в задачах, в которых в качестве модулируемого параметра берется магнитное поле.

Найдем теперь необходимые условия равновесия среды. Взяв rot от обеих частей уравнения (1.6), будет иметь вид:

Из формулы (1.11) следует, что механическое равновесие в среде возможно в случае когда    либо  в  

случае,  когда  векторы  параллельны. Возможны и другие случаи равновесия  когда эти векторы не обязательно вертикальны,но выбраны так, что выполняется условие (1.11).  Далее ограничимся случаем,  когда векторы  вертикальны.

Линеаризуя уравнения (1.1) и (1.10) по малым конвективным возмущениям и предполагая, что  имеем:

Здесь G¯=ΔH градиент магнитного поля, предполагаемый постоянной заданной величиной; c´ ,T´ - отклонения концентрации и температуры от постоянных средних значений c0 и T0 .  

В случае G¯=const из уравнений (1.11), (1.12) следует, что необходимым условием равновесия является постоянство и вертикальность градиентов температуры и концентрации:

Здесь k¯ - единичный вектор, направленный вверх вдоль оси z.

Отметим, что вышеприведенные уравнения при отсутствии  магнитного поля совпадают с уравнениями работы [1]

Магнитное поле в среде можно записать в виде  H¯= H0¯ +H´¯,  где  H0¯ - поле при c0 = const , T0 = const , μ0= const H´¯ - возмущение. Так что G¯=G0¯ + G´¯ , где ; величину G¯ можно считать заданной при выполнении условия G0 >>G´.

2. Уравнения конвективной диффузии. Интерес для приложений представляет случай когда температуру вдоль смеси можно считать постоянной. Конвективная диффузия несжимаемой смеси описывается первым уравнением системы (1.1) и первым уравнением (1.10), а также уравнением неразрывности div v¯ =0 и уравнениями магнитного поля. Для решения конкретных задач необходимо также задавать соответствующие граничные условия на поверхности полости с  жидкостью. Вектор потока диффузии в случае T =const имеет вид:

Далее будем предполагать выполненным условие и пренебрегать в формуле (2.1) слагаемым, связанным с полем тяжести.

Движение смеси при отклонении концентрации от постоянного среднего значения описываются уравнением:

 

В уравнении (2.2) в отличие от уравнения (1.12) учитывается градиент магнитного поля G´¯, индуцированный неоднородностью концентрации.  Вводя  потенциал магнитного поля , из последних двух уравнений (1.1) имеем:

Здесь

Полагая  из формулы (2.3) находим:

Если геометрия задачи такова, что φ´ зависит только от z (z вдоль вектора ), из уравнения (2.4) следует:

Отсюда следует, что влияние градиента концентрации на магнитное поле надо учитывать в случае больших значений B.

Приведем к безразмерному виду стационарное уравнение конвективной диффузии:

 

Введем в рассмотрение  Lc - характерное расстояние, на котором происходит существенное изменение концентрации, LH - характерное расстояние для градиента магнитного поля G, V0 - характерную скорость, G0 - характерный градиент магнитного поля. Обозначая безразмерные величины теми же буквами что и размерные, уравнение (2.5) можно записать в виде:

Здесь  - число   Пекле,

Если  γ << 1 ,  влиянием магнитного поля на диффузию можно пренебречь. При выполнении условия  Pe << 1  надо отбросить левую часть уравнения  (2.6) и  затем приравнять к нулю правую. Распределение концентрации в этом случае определяется уравнением:

Рассмотрим теперь задачу о конвективном движении смеси вблизи полубесконечной вертикальной пластины, на поверхности которой происходит  гетерогенная  изотермическая  реакция. Предполагая  скорость реакции бесконечно большой, запишем граничное условие для концентрации c = 0  на  поверхности пластины (предполагается, что реагирует первая компонента).
Концентрацию вдали от пластины обозначим через c0. Будем считать, что заметное изменение  концентрации происходит в тонком слое вблизи пластины, так что течение имеет вид пограничного слоя. Движение жидкости вдоль пластины происходит под действием поля тяжести и градиента магнитного  поля.  Пренебрегая  индуцированным  градиентом магнитного поля, запишем уравнения движения  в приближении стационарного пограничного слоя [4]:

Здесь z - координата вверх вдоль пластины, x - перпендикулярно к пластине; нижней кромке пластины соответствует  - компонента градиента поля.

Граничные условия:

В работе  [4] показано, что система  (2.7) может быть приведена к обыкновенным дифференциальным уравнениям. Распределение концентрации имеет вид:

Здесь Pr = v/D - число Прандтля,  предполагается что число Прандтля велико [4]. Из формул (2.1) и (2.8) следует, что плотность потока диффузии на пластину равна:

где G0x компонента градиента магнитного поля, n нормаль, направленная внутрь пластины. Таким образом, при помощи магнитного поля можно управлять диффузионными потоками на пластину, на поверхности которой происходит  реакция.

Градиент приложенного магнитного поля предполагается достаточно большим по сравнению с индуцированным градиентом.

Литература

  1. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости М.: Наука, 1972. 392 с.
  2. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 624 с.
  3. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988. 736 с.
  4. Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959. 700