Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,823

Повышение качества математического образования в классическом университете и, в особенности, специальности «Прикладная математика» требует изучить структуру преподавательского состава и сделать ее оптимальной с точки зрения перспектив квалификации преподавателей. Построим математическую модель, основанную на теории вероятностей и статистике [1,2].

Штат преподавателей поделим на три категории: профессора, доценты, ассистенты. Центральное место среди количественных характеристик данной задачи занимают числа людей в каждом классе на данный момент времени; их мы называем запасы.

Обозначим 1 запас людей в классе i в момент времени T. Объёмы запасов могут меняться в любое время, однако в данном случае при изучении учебного процесса наибольшее число изменений происходит в конце академического года или в начале следующего учебного года. Поэтому допустим, что интервал между изменениями составляет один год. T выражается в годах и является целым числом.

Размеры запасов изменяются за счёт наличия потоков, направленных как в систему, так и из системы (набор и увольнение), а также за счет внутренних перемещений при переходе сотрудников в класс с более высокой квалификацией. В результате соотношение между запасами и потоками записывается следующим образом

2

                  2                                 (1)

где число оставшихся в классе j сотрудников составляет

3

Потоки вызывают изменения в запасах, поэтому нужно сделать допущения относительно перемещений.

При построении математической модели прежде всего ставится цель отразить характеристики реальной системы, которую эта модель представляет. На первом этапе необходимо обратиться к данным о поведении рассматриваемой системы, чтобы изучить возможность введения оправданных допущений. Прежде чем делать научные прогнозы, нужно установить закономерности, имевшие место в прошлом, сделать дополнительные допущения о том, что эти закономерности сохранятся в будущем. Дальнейшее продвижение в решении задачи возможно после статистического исследования данных по запасам и потокам за прошлые годы.

Рассмотрим потоки, характеризующие повышение в должности. Они управляются некоторой совокупностью факторов, которые варьируются от одного вида найма к другому. Иногда количество повышений связано с числом образующихся вакансий. В других случаях повышения происходят автоматически по достижению преподавателем определённого вида квалификации. Эта возможность ближе к действительности, возьмём её за основу при установлении соотношения между потоками и запасами. Это соотношение оказывается простой пропорциональной зависимостью, поскольку отношения 4 являются постоянными.

Будем прогнозировать размеры запасов исходя из пропорциональности между 5 и 4 (числа людей, перешедших в класс j ко времени T+1 и запаса людей 2). Для кафедры высшей и прикладной математики Пензенского государственного университета отношение колеблется от 0,047 до 0, 071.

Рассмотрим модель как детерминированную. В действительности отношения 4 могут не зависеть от T систематическим образом, тем не менее они будут меняться. Эти изменения могут быть весьма значительными при малых потоках 2. В нашем случае 2= 42 человека и уход из системы отдельных лиц становится непредсказуемым событием. Модель должна включать в себя не только регулярные явления, наблюдаемые в коллективе, но и неопределённости поведения индивидуумов. В связи с этим воспользуемся методами теории вероятностей. Допустим, что перемещения происходят независимо и что индивидуум в классе i характеризуется вероятностью pij перехода в класс j в течение года. Пусть вероятность его ухода составляет 4, тогда , очевидно,

5                                   (2)

поскольку индивидуум должен остаться в своём классе, переместиться в другой класс или выбыть совсем. При этом допущении число лиц, переходящих из класса i в класс j за год, будет случайной величиной с биномиальным распределением при заданном начальном запасе 2. Ожидаемый поток будет равен 5. Это соответствует допущению эмпирического характера относительно того, что потоки пропорциональны запасам.

Рассмотрим вопрос о наборе преподавателей на кафедру. Его удобнее рассмотреть с двух позиций. Первая - общее число набираемых в систему, вторая - способ распределения этих лиц по классам. В организации, общее число сотрудников которой фиксировано, общее число вновь нанимаемых должно быть равно общему числу выбывающих, то есть должно выполняться уравнение

        5                                (3)

Распределение нанимаемых лиц по классам вполне фиксировано, поскольку оно определяется потребностями организации. Допустим, что доля ri от общего числа нанимаемых на работу в системе зарезервирована для класса 5 причём 5

Собирая все допущения, получаем, что модель характеризуется:

1) матрицей вероятностей переходов, управляющей перемещениями в системе 5

2) вектором вероятностей ухода 5 связанным с pij уравнением (2);

3) вектором 5 определяющим распределение нанимаемых по классам;

4) ограничением 5

В соответствии с моделью контингент преподавателей следующего года есть случайная величина. Поэтому значения запасов не могут быть предсказаны точно. В этих условиях используются ожидаемые значения случайной величины в качестве прогноза. Можно снабдить такое предсказание стандартной ошибкой, с помощью чего и задаётся статистический характер модели.

Определим математические ожидания в обеих частях уравнения (1) для запасов за год T. Известно, что

5

где черта означает математическое ожидание. Набор в класс j, 5 можно записать как 5, так что необходимо найти математическое ожидание для 5, имеем

5

и из формулы (3)

5

Подставим всё это в формулу (1), получим

5                   (4)

В матричной форме эти уравнения могут быть записаны в виде

5                                                (5)

Таким образом, если параметры модели известны, то запас следующего года T+1 может быть найден по запасу текущего года T путём простого перемножения матриц. Прогноз на следующий год 5 можно использовать в качестве основания для прогноза ещё на один год вперёд, если взять

  5                           (6)

Матрица Q относится к особому классу матриц, называемых стохастическими, и представляет все возможные переходы от одного класса к другому. Она имеет неотрицательные элементы и суммы всех элементов каждой из строк равны единице. Подобные матрицы играют основную роль в теории Марковских цепей и можно применить эту теорию для исследования поведения модели.

Первый вопрос, который был поставлен относительно структуры преподавательского состава кафедры высшей и прикладной математики, состоит в том, имеется ли тенденция к продолжению роста квалификации преподавателей в рамках системы.

Допустим, что начальные запасы и величины параметров таковы:

5 - запасы;

5 - вектор ухода;

5 - вектор распределения по квалификации;

5

Вид матрицы P вполне типичен. Нули ниже диагонали означают, что движение из более высоких классов в более низкие отсутствует.

Построим матрицу : 5.

В нашем случае

5.

Подсчет запаса в следующем году показывает: 5.

Если получить структуру классов на 5 или 10 лет вперёд, то выкладки показывают, что система приобретает признаки перегруженности высоких классов. Такое поведение зависит от системы P. Необходимо знать меру того, насколько всё может стать неблагополучным. В математических терминах это означает - каково предельное состояние 5 при f?

После T лет

5                (7)

В теории марковских цепей показывается при весьма общих условиях, которые будут выполняться в любой разумной постановке задачи о кадрах, что

 5                   (8)

где 5 стохастическая матрица с одинаковыми строками.

Если через q обозначить общую строку этой матрицы, то устремляя T к бесконечности в формуле (7), получаем

5            (9)

где N - общий (фиксированный) размер системы. Следовательно, имеется предельная структура, которая не зависит от начальной структуры. Простейший способ подсчёта q связан с тем, что предельная структура должна удовлетворять условию

5                       (10)

Эта система уравнений является вырожденной, однако если опустить одно из уравнений и использовать тот факт, что

5

то уравнения можно решить.

В применении к кафедре ВиПМ система имеет вид:

5

Решая эту систему, получаем 5 Учитывая, что на кафедре работает 42 преподавателя, получаем предельную структуру: 4 ассистента, 11 доцентов и 27 докторов наук.

СПИСОК ЛИТЕРАТУРЫ:

  1. Barthlomew D.J. (1973). Stochastic models for social processes, 2nd, edn. Wiley; New York.
  2. Гмурман В.Е. Теория вероятностей и математическая статистика. М. «Высшая школа», 1999, 479с.
Работа представлена на научную международную конференцию «Перспективы развития вузовской науки», "Дагомыс" (Сочи), 20-23 сентября 2008 г. Поступила в редакцию 01.10.2008.