Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

МОБИЛЬНЫЕ ЛИДАРЫ. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ МЕХАНИЧЕСКОЙ СИСТЕМЫ «ЛИДАР – ОСНОВАНИЕ»

Дмитриев В.С. Костюченко Т.Г. Теплоухов В.В.

Лазерное зондирование атмосферы началось в России в 1965 г. Дистанционность лазерных измерений, возможность определять характеристики воздушной среды, получать самые разные сведения о свойствах атмосферы на различных высотах, хорошее пространственно-временное разрешение, связанное с малой длительностью импульса и высокой частотой повторения импульсов лазера, делают во многих случаях метод лазерного зондирования незаменимым.

Лазерным прибором зондирования, имеющим огромные преимущества в сравнении с акустическими приборами и радиолокаторами, является лидар.

В статье представлена проводимая Институтом оптики атмосферы СО РАН совместно с кафедрой точного приборостроения Томского политехнического университета работа по проектированию и расчету силовых элементов механической системы «Излучатель лидара - основание лидара - автомобиль».

Лидары применяются как в стационарном, так и мобильном вариантах. Например, лидар устанавливается на автомобиле ПАЗ (автобусе).

Механическая система «Излучатель лидара - основание лидара - автомобиль» в рабочем режиме испытывает вибрационные механические воздействия со стороны работающего на холостом ходу двигателя автомобиля, который служит генератором электропитания связанных с лидаром систем (навигационной, телевизионной, газоанализа, метеосистемы, информационной). Вибрации, возникающие как в отдельных узлах, так и в целом в конструкции силовых элементов основании лидара, передаются на излучатель, и при значительном расстоянии до зоны зондирования амплитуда колебаний, составляющая доли милиметров у излучателя, превращаются в десятки метров на объекте.

Вибрации и колебания корпуса автомобиля могут привести к изменению положения светового пятна лазерного излучения на зондируемом объекте, как за счет разъюстировки оптического тракта, так и за счет колебаний зеркал системы наведения, расположенных на крыше автомобиля.

Создание оптимальной конструкции основания (выбор кинематической схемы, подбор сечения силовых несущих элементов конструкции, применение гасителей демпферов колебаний) позволяет избегать негативного влияния внешних воздействий.

Для принятия конструкторских решений при разработке механической системы «Излучатель лидара - основание лидара - автомобиль» необходимо знать частоту и амплитуду вибрации разных участков корпуса автомобиля при работе двигателя автомобиля, а также амплитуду колебаний корпуса при порывах ветра.

В [1] показано, что колебания линии прицела лидара зависят от технических характеристик основания, на которое он установлен. Устранение (уменьшение) этих колебаний возможно, во-первых, установкой лидара на основание, не связанное с салоном автомобиля и, во-вторых, дополнительно установкой лидара на амортизаторы, обладающие способностью диссипации энергии внешних воздействий.

Повышение стабильности в пространстве линии прицела лидара возможно за счет установки последнего на раме. Рама имеет возможность небольших угловых отклонений, т.к. устанавливается на упруго-вязких опорах, расположенных по периметру корпуса. Для повышения эффективности гашения колебаний в раме нужно конструктивно обеспечить необходимую маятниковость. Такое техническое решение позволяет, во-первых, автоматически поддерживать направление рамы по вертикали места и, во-вторых, в рабочем режиме лидара исключать механические воздействия от работающего двигателя автомобиля на оптическую систему лидара за счет диссипации энергии в упруго-вязких опорах.

Конструкция основания лидара имеет свои собственные механические характеристики (резонансные частоты, жесткость и прочность). Для анализа влияния внешних воздействий на лидар в рабочем режиме при эксплуатации мобильного варианта лидара использован номограммный метод расчета вибрационных параметров основания лидара в комплексе с методом конечных элементов.

Суть предлагаемого метода заключается в следующем. Базовая конструкция основания лидара имеет конфигурацию замкнутой по кругу фермы. За целевые функции берутся собственные частоты и жесткость конструкции основания. В процессе расчета определяется их изменение в зависимости от вариации размеров и конфигурации основания (сечение и длина стоек, количество секций, диаметр основания).

С использованием программных продуктов T-Flex CAD 2D/3D (3D моделирование) и T-Flex Анализ (метод конечных элементов) проводится статический и динамический анализ конструкции основания. По результатам анализа строятся номограммы, показывающие:

- зависимость величины деформации основания лидара от размеров основания, сечения укосин и количества секций при нагрузке в 1 кг;

- зависимость собственной частоты основания от размеров основания, сечения укосин и количества секций.

Статический анализ показывает, что с увеличением диаметра замкнутой рамной конструкции основания лидара деформация ее при одной той же нагрузке увеличивается, причем увеличение практически линейное. При увеличении количества секций деформация конструкции уменьшается.

Динамический анализ показывает, что с увеличением диаметра основания собственная частота конструкции основания уменьшается, с увеличением сечения стоек и с увеличением количества укосин собственная частота увеличивается.

Предложенный способ определения характеристик основания лидара путем совмещения метода конечных элементов и номограммного метода позволяет получать зависимости изменения собственной частоты и деформации конкретной механической конструкции при изменении ее параметров, а, главное, получать их численные значения.

Результаты аналитических исследований с достаточно хорошей точностью подтверждаются экспериментальными исследованиями.

Таким образом, на основании выполненных исследований предложена научно обоснованная методика расчета оригинальной конструкции основания лидара, представляющего собой сложную статически неопределимую механическую систему.

Экспериментальный статический анализ уменьшенной физической модели конструкции основания лидара, а так же испытание ее на вибростенде (модальный анализ) с хорошей точностью подтверждают результаты расчета. Сходимость расчетных результатов с экспериментальными составляет около 7%.

СПИСОК ЛИТЕРАТУРЫ

1. Дмириев В.С., Костюченко Т.Г., Янгулов В.С., В.В. Теплоухов. Мобильные лидары. Влияние внешних механических воздействий на точность прицеливания лидара //Известия Томского политехнического университета, 2007 - т. 311, - № 2. - c. 30-33


Библиографическая ссылка

Дмитриев В.С., Костюченко Т.Г., Теплоухов В.В. МОБИЛЬНЫЕ ЛИДАРЫ. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ МЕХАНИЧЕСКОЙ СИСТЕМЫ «ЛИДАР – ОСНОВАНИЕ» // Успехи современного естествознания. – 2010. – № 9. – С. 208-210;
URL: https://natural-sciences.ru/ru/article/view?id=8910 (дата обращения: 28.03.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674