Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

ПЕРСПЕКТИВА ПРИМЕНЕНИЯ ФТОРИДА АММОНИЯ ДЛЯ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ ИЗ ЛАТЕКСОВ

Черных О.Н. Никулин С.С.
Изучена коагулирующая способность фторида аммония при выделении каучука из латекса СКС- 30АРК. Исследовано влияние температуры и концентрации раствора фторида аммония на полноту коагуляции. Проведена оценка свойств резиновых смесей и вулканизатов на основе каучука СКС-30 АРК, выделенного из латекса фторидом аммония.

В настоящее время в промышленности при выделении бутадиен-стирольных каучуков в качестве коагулирующих агентов применяют неорганические соли (обычно хлорид натрия) с последующим подкислением системы серной кислотой [1]. Традиционные способы коагуляции обладают высокой эффективностью и относительной дешевизной, однако расход широко распространенного коагулянта хлорида натрия при выделении бутадиен-стирольных каучуков из латексов достигает 250 кг/т каучука. Сточные воды, содержащие минеральные соли, попадая в водоемы, наносят непоправимый ущерб окружающей среде. Поэтому в настоящее время  актуальной является проблема разработки новых технологий, методов коагуляции латексов  и поиску новых коагулирующих агентов, позволяющих работать в области малых расходных норм [2-4]. Одно из перспективных направлений - коагуляция латексов галогенидами аммония, обладающими достаточной распространенностью в химической промышленности и содержащихся в отходах некоторых производств.

В настоящей работе изучена коагулирующая способность  фторида  аммония при выделении каучука из латекса СКС- 30АРК.

Соли аммония представляют интерес в связи с возможностью снижения расхода неорганического коагулянта, т.к. ионы NН4+ больше по размеру и менее гидратированны, чем ионы Nа+ [5] (они близки по свойствам к ионам рубидия) должны обладать и более высокой эффективностью коагулирующего действия. 

Коагуляцию каучукового латекса СКС-30 АРК проводили согласно общепринятой методике с использованием в качестве коагулирующего агента  водный раствор фторида аммония с концентрацией 10, 20, 30 % масс. и подкисляющего агента 1,0-2,0 % масс. водного раствора серной кислоты при температуре от 20 до 95оС. Процесс выделения каучука из латекса изучали на коагуляционной установке, представляющей собой емкость, снабженную перемешивающим устройством и помещенную для поддержания заданной температуры в термостат. В емкость загружали 20 мл латекса, термостатировали в течение 15-20 минут при заданной температуре, после чего вводили водные растворы коагулирующих агентов и серной кислоты. Коагуляцию проводили при рН = 2,0 - 2,5. Полноту коагуляции оценивали визуально по прозрачности серума и гравиметрически - по массе образующегося коагулюма.

Образующийся коагулюм отделяли от серума, промывали теплой водой и после отжатия крошку каучука высушивали в сушильном шкафу при температуре 75-80оС.

Характеристика бутадиен-стирольного латекса производства каучука СКС-30 АРК представлена в таблице 1.

Таблица 1. Характеристика бутадиен-стирольного латекса производства каучука СКС-30 АРК

Наименование показателя

Значение

Сухой остаток, %

20,3

Поверхностное натяжение, [s], мН/м

54-57

рН латекса

7,8-8,5

Размер латексных частиц [r], нм

7,5-8,1

Содержание связанного стирола, %

22,0-23,5

Массовая доля антиоксиданта, %

1,2

Полученные экспериментальные данные представлены в таблице 2.

Таблица 2. Результаты эксперимента коагуляции латекса СКС-30 АРК фторидом аммония

Температура коагуляции,
°С

Концентрация фторида
аммония, %

Расход фторида аммония,
кг/т каучука

Выход
коагулюма
(по массе), %

Оценка полноты
коагуляции

20

10

50

100

150

190

37-40

58-60

78-80

96-97

Коагуляция неполная

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

20

50

100

150

180

50-52

68-70

85-86

96-98

Коагуляция неполная

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

30

50

100

150

170

65-67

71-73

89-91

95-96

Коагуляция неполная

коагуляция неполная

Коагуляция неполная

Полная коагуляция

40

10

50

100

170

10-11

58-59

95-96

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

20

50

100

150

10-12

70-72

95-96

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

30

50

100

130

11-13

71-73

98-99

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

60

10

50

100

150

15-17

76-79

97-98

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

20

50

100

130

17-19

82-85

97-98

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

30

50

70

100

14-16

40-42

94-96

Коагуляция неполная

Коагуляция неполная

Полная коагуляция

80

10

50

100

120

1821

85-87

94-96

Коагуляция неполная.

Коагуляция неполная

Полная коагуляция

20

50

70

100

23-24

51-53

98-99

Коагуляция неполная.

Коагуляция неполная

Полная коагуляция

30

10

50

80

5-7

20-22

97-98

Коагуляция неполная.

Коагуляция неполная

Полная коагуляция

95

10

50

100

130

17-19

78-80

98-99

Коагуляция неполная.

Коагуляция неполная

Полная коагуляция

20

50

100

120

21-24

83-85

96-98

Коагуляция неполная.

Коагуляция неполная

Полная коагуляция

30

50

70

100

24-26

59-61

99-99,5

Коагуляция неполная.

Коагуляция неполная

Полная коагуляция

Анализ результатов эксперимента показал, что увеличение температуры процесса выделения каучука из латекса до 80°С существенно снижает расход коагулянта (от 170 до 80 кг/т каучука). Как известно из коллоидной химии [6] повышение температуры влечет за собой уменьшение агрегативной устойчивости и, следовательно, разрушение дисперсной системы, в частности латекса на дисперсионную среду (серум) и дисперсную фазу (коагулюм).

Увеличение температуры с 20 до 80°С приводит к снижению расхода фторида аммония. Однако дальнейшее повышение температуры коагуляции до 95°С приводит к увеличению расхода фторида аммония, что, по-видимому, связано с усилением процесса гидролиза. Фторид аммония можно рассматривать как соль, образованную слабой кислотой и слабым основанием. Данный вид соли может подвергаться полностью гидролизу:

NH4F + H2O → NH3  HOH + HF.

Как известно из неорганической химии, влияние температуры на степень гидролиза вытекает из принципа Ле Шателье. Все реакции нейтрализации протекают с выделением теплоты, а гидролиз - с поглощением теплоты. Поскольку выход эндотермических реакций с ростом температуры увеличивается, то и степень гидролиза растет с повышением температуры [7].

Существенное влияние на полноту коагуляции оказывает и концентрация фторида аммония. Следует отметить, что применение разбавленных растворов фторида аммония (1-5 % масс.) приводит к снижению их активности. Это может быть связано вероятнее всего с существенным уменьшением концентрации дисперсной фазы после введения в латекс коагулирующего агента, что в свою очередь отражается на достижении полноты коагуляции [8]. Высококонцентрированные растворы фторида аммония при введении в латекс значительного влияния на уменьшение концентрации дисперсной фазы. Это стабилизирует процесс и оказывает минимальное влияние на процесс коагуляции.

По результатам эксперимента можно сделать вывод, что при использовании в качестве коагулирующего агента фторид аммония целесообразно вести процесс при температурах 60-80°С и использовать высококонцентрированные растворы (20-30 % масс.).

На основе каучука выделенного из латекса фторидом аммония были приготовлены резиновые смеси с использованием общепринятых ингредиентов.

В таблице 3 представлены результаты испытаний каучука СКС-30 АРК и вулканизатов на его основе, выделенного из латекса фторидом аммония.

Таблица 3. Свойства резиновых смесей и вулканизатов на основе каучука СКС-30 АРК, выделенного из латекса фторидом аммония

Показатели

Вид коагулирующего агента

NH4F

NaCI

Вязкость по Муни

44,0

44,0

Массовая доля свободных органических кислот, %

5,8

5,7

Массовая доля мыл органических кислот, %

0,09

0,09

Потеря массы при сушке, %

0,18

0,17

Массовая доля золы, %

0,21

0,24

Напряжение при 300 % удлинении, МПа

8,3

10,4

7,8

9,0

Условная прочность при растяжении, МПа

26,7

27,7

29,2

29,0

Относительное удлинение при разрыве, %

635

550

640

610

Относительная остаточная деформация после разрыва, %

18

14

16

13

Примечание: продолжительность вулканизации: числитель - 60 мин; знаменатель - 80 мин.

Анализ представленных результатов показал, что вулканизаты, полученные на основе каучука выделенного из латекса фторидом аммония, обладают комплексом свойств, близким к вулканизатам на основе каучука, выделенного из латекса хлоридом натрия (стандартные образцы).

Таким образом, по результатам проведенного эксперимента фторид аммония может служить альтернативной заменой традиционному коагулянту - хлориду натрия, так как существенно снижается его расход (80-100 кг/т каучука), а полученные вулканизаты обладают комплексом свойств не уступающим стандартным образцам. В свою очередь снижение расхода коагулянта приведет к уменьшению образования количества сточных вод, сбрасываемых в водоемы и наносящих непоправимый ущерб окружающей среде.

СПИСОК ЛИТЕРАТУРЫ:

  1. Кирпичников П.А., Аверко-Антонович Л.А., Аверко-Антонович Ю.О. Химия и технология синтетического каучука. - Л.: Химия. 1987. 424 с.
  2. Распопов И.В., Никулин С.С., Гаршин А.П. и др. Совершенствование оборудования и технологии выделения бутадиен-(a-метил)стирольных каучуков из латексов. - М.: ЦНИИТЭнефтехим. 1997. 68 с.
  3. Распопов И.В., Никулин С.С., Рыльков А.А., Шаповалова Н.Н. // Производство и использование эластомеров. - 1997. N 12. С. 2-6.
  4. Моисеев В.В., Попова О.К., Косовцев В.В., Евдокимова О.В. Применение белков при получении эластомеров. - М.: ЦНИИТЭнефтехим. 1985. 53 с.
  5. Измайлов А.Н. Электрохимия растворов. - М.: Химия. 1966. 576 с.
  6. Глинка Н.Л. Общая химия: учебное пособие для ВУЗов. Под ред. А.И. Ермакова изд. 30-е испр. - М.: Интеграл-Пресс, 2005. 728 с.
  7. Зимон, А.Д., Лещенко, Н.Ф. Коллоидная химия [Текст] / А.Д. Зимон, Н.Ф. Лещенко. - М.: Химия, 1995. 336 с.
  8. Никулин С.С., Вережников В.Н., Пояркова Т.Н. // ЖПХ. Т. 73. вып. 10., 2000. С. 1720-1724.

Библиографическая ссылка

Черных О.Н., Никулин С.С. ПЕРСПЕКТИВА ПРИМЕНЕНИЯ ФТОРИДА АММОНИЯ ДЛЯ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ ИЗ ЛАТЕКСОВ // Успехи современного естествознания. – 2008. – № 8. – С. 10-13;
URL: https://natural-sciences.ru/ru/article/view?id=10364 (дата обращения: 28.03.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674