Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,736

УПРАВЛЕНИЕ КАУПЕРОМ ГИПЕРЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ

Гилев В.М. 1 Шпак С.И. 1
1 Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск
1. Structure of data acquisition system of experimental researches in the hypersonic wind tunnel / V.M. Gilyov, V.V. Garkusha, V.I. Zvegintsev, A.N. Shiplyuk, S.I. Shpak, V.V. Yakovlev. // 16th International conference on the methods of aerophysical research (ICMAR’2012) (Kazan–Novosibirsk, Russia, 20–26 aug., 2012): Abstracts. Pt. 1. – Kazan, 2012. – P. 110–111.
2. Аппаратно-программный комплекс для создания систем автоматизации / В.М. Гилев, В.В. Гаркуша, А.С. Мишнев, Д.О. Шевченко, В.В. Яковлев. // Датчики и системы. – 2012. – № 4. – С. 6–9.
3. Автоматизированная система управления гиперзвуковой аэродинамической трубой адиабатического сжатия / В.М. Гилев, С.П. Суродин, С.Р. Шакиров, Д.О. Шевченко, С.И. Шпак // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 11. – С. 38–40.

В данной работе представлено описание системы управления каупером создаваемой в ИТПМ СО РАН гиперзвуковой аэродинамической трубы адиабатического сжатия. Рассмотрены функции, выполняемые каупером, его структура, методика проведения измерений температуры, основные технические характеристики. Дано описание и представлены возможности системы управления каупером.

В Институте теоретической и прикладной механики (ИТПМ) им. С.А. Христиановича СО РАН для проведения научных исследований в области сверх- и гиперзвуковой аэродинамики в настоящее время создается новая экспериментальная установка кратковременного действия – гиперзвуковая аэродинамическая труба адиабатического сжатия АТ-304 [1]. Данная установка позволяет моделировать обтекание перспективных летательных аппаратов, в том числе использующих ГПВРД, вплоть до космических скоростей полета при натурных значениях числа Рейнольдса Re.

Создание воздушного потока в представляемой аэродинамической трубе осуществляется за счет источника рабочего газа, который обеспечивает адиабатическое сжатие газа в форкамере до давления 3000 атм. с температурой до 2500 К в объеме около 4 дм3. В момент пуска при истечении рабочего газа из форкамеры через сопло в рабочую часть аэродинамической трубы происходит его ускорение до сверх/гиперзвуковых скоростей. Всё это сопровождается его резким охлаждением. При этом может происходить конденсация влаги из воздуха или даже появление изморози на стенках аэродинамической трубы или поверхности исследуемой модели. В результате этого происходит искажение результатов проводимых измерений. Зачастую в таких случаях вообще может быть исключена возможность получения достоверных научных результатов.

Во избежание подобных ситуаций при гиперзвуковых скоростях обтекания перед поступлением рабочего газа в форкамеру аэродинамической трубы производят его нагревание. Для этой цели в аэродинамической трубе АТ-304 газ проходит через специальное устройство – омический подогреватель (каупер).

Каупер аэродинамической трубы. Каупер аэродинамической трубы представляет собой полый цилиндрический объем, через который проходит рабочий газ (воздух) перед тем, как поступить в адиабатический подогреватель газа. Корпус, через который проходит рабочий газ, выполнен в виде трубы из нержавеющей стали. Внутренний объем корпуса заполнен плоскими вкладышами с отверстиями, равномерно распределенными по площади вкладыша. Вкладыши сделаны их нихромового сплава ХН78Т и установлены последовательно друг за другом с небольшим зазором так, чтобы была возможность для прохождения газового потока через объем, заполненный вкладышами.

По наружной поверхности корпуса каупера выполнена спиральная трехзаходная канавка. В каждом из заходов укладываются фазовые магистрали нагревателя, выполненные из нихромовой проволоки диаметром 2 мм в изоляции, набранной из керамических втулок с наружным диаметром 8 мм.

Электрическая цепь нагревательного элемента – трехфазная, изолированная от корпуса. Спираль через электрический контактор подключается к силовой электрической сети 380 В. На стенках каупера в разных точках установлены четыре термопары («хромель-капель»), с помощью которых производится измерение температуры газа, проходящего через каупер. При этом используется среднее значение температуры, вычисленное по результатам измерений температуры с помощью данных термопар.

С помощью системы регулирования температура газа в каупере поддерживается на постоянном уровне. Система регулирования построена таким образом, что при спаде температуры ниже определенного уровня по команде компьютера контактор вновь включается и питающее силовое напряжение подается на электрическую спираль каупера. Таким способом производится непрерывное автоматическое поддержание температуры газа в каупере аэродинамической трубы.

Тепло от нихромовой проволоки передается через стенки керамических втулок на стенку корпуса, а от стенки корпуса – через стенки теплоотдающих вкладышей – к газовому потоку, проходящему через отверстия во вкладышах. Таким образом, реализуется схема нагрева косвенного типа.

Основными нагруженными элементами каупера являются нагревательные элементы (нихромовая проволока, разогреваемая до температуры 600–800 °С и керамические втулки), корпус, теплоотдающие вкладыши, фланцы корпуса, теплоизоляция и все соединения деталей и узлов, работающих под воздействием высоких температур до 600 °С и рабочего давления адиабатического подогревателя аэродинамической трубы до 20 МПа.

Управление каупером. Управление каупером аэродинамической трубы осуществляется с использованием аппаратно-программного комплекса АПК-2010, который разработан в КТИ ВТ совместно с ИТПМ СО РАН и предназначен для управления источником рабочего газа аэродинамической трубы [2]. Комплекс АПК-2010 построен на основе магистрально-модульного принципа, предложенного коллективом разработчиков [3]. В состав АПК-2010 входят измерительные модули – аналого-цифровые преобразователи (АЦП), а также модули дискретных сигналов, которые позволяют по команде программы, выполняющейся в компьютере, включить/выключить подачу напряжения на спираль каупера аэродинамической трубы.

Измерение температуры рабочего газа. Измерение температуры рабочего газа осуществляется с помощью встроенных термопар. Напряжение на выходе каждой термопары измеряется с использованием соответствующего канала аналогово-цифрового преобразователя (АЦП). Показания АЦП, фиксирующие температуру рабочего газа, отображаются на мониторе АРМ оператора аэродинамической трубы в числовом, а также в графическом виде. Таким образом, на экране монитора можно визуально наблюдать весь процесс нагревания рабочего газа во времени.

Текущие значения температуры в точках установки термопар каупера заносятся в базу данных эксперимента. Это позволяет анализировать результаты работы аэродинамической трубы после завершения эксперимента и использовать эти данные в процессе обработки результатов проводимых исследований [3].

Основные технические характеристики каупера. Ниже приведены основные технические характеристики каупера:

– напряжение переменного тока U = 380 В;

– подводимая мощность P = 26 кВт;

– температура нагрева корпуса T = 600 °С;

– максимальное давление в корпусе P = 25 МПа;

– рабочая среда – воздух, азот, углекислый газ или другие нетоксичные и негорючие газы.

Такой широкий набор используемых газов позволяет значительно расширить возможности моделирования течений в представляемой аэродинамической трубе.

Заключение

К настоящему времени работы по созданию системы управления каупером аэродинамической трубы завершены. Тестовые испытания показали её работоспособность и достаточно высокую эффективность. Ведутся работы по отладке системы и привязке её к реальным условиям эксперимента. Выполнение данного проекта осуществлялось при финансовой поддержке РФФИ (гранты № 11-07-00483-а и 12-07-00548-а).


Библиографическая ссылка

Гилев В.М., Шпак С.И. УПРАВЛЕНИЕ КАУПЕРОМ ГИПЕРЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ // Успехи современного естествознания. – 2013. – № 5. – С. 109-111;
URL: http://www.natural-sciences.ru/ru/article/view?id=31701 (дата обращения: 21.10.2019).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074