Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

ГЕНЕТИКА ПОВЕДЕНИЯ: АССОЦИАЦИЯ ГЕНОТИПА ПО ЛОКУСУ TAG 1A DRD2

Леушкина Н.Ф. Калимуллина Л.Б.
В работе впервые приведены сведения об особенностях аудиогенной чувствительности и поведения в «открытом поле» двух групп крыс, гомозиготных по локусу TAG 1A DRD2.

Изучение механизмов взаимодействия организма с факторами внешней среды, а также организации простых и сложных форм поведения - актуальная проблема учения о высшей нервной деятельности, которая занимает центральное место в системе нейронаук. Современная нейробиология обладает широким набором методических приемов, позволяющих проследить путь от гена к психологическому признаку (психогенетика), использует разнообразные подходы в анализе поведенческих реакций животных с модификациями структуры гена (генетика поведения).

Целью данной работы явился анализ поведенческих реакций и аудиогенной чувствительности двух субпопуляций крыс линии WAG/Rij, различающихся аллельной структурой по локусу TAG 1A гена рецептора дофамина второго типа (DRD2). Проведенные ранее исследования полиморфизма TAG 1A рестрикционного локуса дофаминового рецептора второго типа (DRD2) у этой линии крыс [3], показали наличие двух аллелей (А1 и А2) и выявили частоту представительства генотипов А12, А11 и А22 в популяции крыс линии WAG/Rij. Целенаправленное скрещивание крыс позволило получить на кафедре морфологии и физиологии человека Башкирского госуниверситета две субпопуляции гомозиготных крыс указанной линии (А11 и А22, далее обозначены как группы крыс А1А1 и А2А2).

Крысы линии WAG/Rij являются инбредной линией с генетически детерминированной абсансной эпилепсией. Важным звеном в патогенетических механизмах этой формы эпилепсии является дефицит дофаминэргической системы, при этом ведущее значение имеет изменение уровня функционирования дофаминовых рецепторов второго типа (DRD2) [5].

Всех использованных в работе половозрелых крыс (в возрасте шести месяцев) содержали в стандартных условиях вивария, характеризующихся постоянством комнатной температуры (200-220)С и уровнем влажности. Еду и питье животные получали ad libitum. Аудиогенную чувствительность крыс определяли в специальной камере (60x60x60см) по методике Г.Д.Кузнецовой, используя «звон ключей» («keys ringing»). Звуковой сигнал имел диапозон 13-85 kHz (максимум спектра 20-40 kHz) и среднюю интенсивность 50-60 dB с величиной пиков до 80-90 дБ (рис.). Стимульный раздражитель включал в себя ультразвуковую часть (20 кГц и выше) и был более эффективным для вызова большого судорожного припадка, чем звук звонка или гудка [10]. Он предъявлялся в течение 1,5 минут.

Поведение крыс изучали в тесте - «открытое поле». «Открытое поле» представляло собой квадратную освещенную арену, разделенную на 16 равных частей. В течение 5 минут регистрировали такие параметры как латентный период до первого движения, число пересеченных квадратов в центре и на периферии поля, количество стоек в центре и на периферии поля, эпизоды груминга и общее время их проведения, неподвижность, уринации, число болюсов с занесением их в протокольные листы. Регистрацию параметров поведения проводили в течение десяти дней. Тест «открытое поле» был разработан еще в тридцатые годы прошлого века К. Холлом для оценки поведения крыс [9] и в настоящее время это один из самых распространенных методов регистрации поведения грызунов, который широко используется в экспериментальной нейробиологии. Полученные результаты систематизировали и подвергали статистической обработке.

Процент животных, гомозиготных по аллелю А1 по локусу TAG 1A DRD2 (условно обозначаемая в работе как группа А1А1), проявивших чувствительность к аудиогенной стимуляции формированием большого судорожного припадка в выборке из десяти поколений (общее количество - 78), составил 16 процентов. Среди крыс, гомозиготных по аллелю А2 (условно обозначены в работе как группа А2А2) в тождественном локусе DRD2 в тех же условиях наблюдения (общее количество 112 особей), процент отреагировавших на звуковой стимул судорожным припадком оказался равным 80.

Выявленные различия в аудиогенной чувствительности исследованных нами групп крыс (А1А1 и А2А2) позволили предположить особенности в функционировании вестибуло-кохлеарного анализатора и поставили следующий вопрос, который решался в данной работе - проявляется ли различная настройка вестибуло-кохлеарного анализатора в поведении животных. Известно, что характеристики поведенческих реакций весьма адекватно отражают функциональные свойства нервной системы, при этом «поведенческий акт - это всегда результат системной (с учетом нейрофизиологических, медиаторных и гормональных механизмов) обработки энергетических и информационных свойств раздражителя корковыми и подкорковыми структурами [8].

В экспериментальной группе животных (общее количество А1А1 и А2А2 равно 27), результаты исследования поведения которых приводятся в данной работе, процент аудиогенных особей составил в группе А1А1 25 % и 95% в группе А2А2.

Полученные результаты по регистрации поведения систематизированы в таблицах 1 и 2.

Таблица 1. Показатели двигательной активности крыс группы А1А1 и А2А2 в открытом поле (ОП)

 

Генотип по TAG 1A DRD2

 

Неподвижность (сек)

Двигательная активность (число амбуляций - количество пересеченных квадратов)

До первого движения

В течение сеанса ОП

общая

Центр ОП

Периферия ОП

А11

0,55+0,49

 

1,15+0,98

98,03+8,09

6,78+2,05

91,25+6,04

А22

10,25+2,24

 

31,45+9,25

48,26+5,99

2,68+0,67

45,58+5,32

Уровень значимости
p

 

<0,01

 

<0,05

 

<0,01

 

>0,05

 

<0,001

Приведенные в таблице 1 данные показывают, что у крыс А2А2 по сравнению с А1А1 значимо увеличен латентный период до начала локомоции, при этом различия достигают 20-кратного значения. Также крысы А2А2 в процессе тестирования в открытом поле чаще замирают, оставаясь в неподвижности. Общая продолжительность неподвижности у крыс А2А2 в тридцать раз превышает этот показатель у крыс А1А1.

Анализ двигательной активности крыс, основанный на подсчете числа амбуляций, выявил, что крысы А2А2 в течение всего сеанса наблюдения за их поведением в открытом поле, меньше двигаются. Они посещают в два раза меньшее число квадратов (общая двигательная активность, p<0,01). При этом снижение общей двигательной активности приводит к тому, что крысы А2А2 меньше пересекают квадраты как в центре (р<0,05), так и на периферии поля (р<0,001). При этом следует отметить, что крысы обеих групп предпочитают двигаться по периферии поля и редко посещают его центр, что позволяет предполагать, что обеим группам крыс присуща тревожность.

Показателем исследовательской деятельности крыс является количество вертикальных стоек, которые крысы совершают, становясь на задние лапы, и совершая повороты головы, что часто сопровождается движением вибрисс. Эти данные приведены в таблице 2.

Таблица 2. Показатели исследовательской деятельности и груминга крыс группы А1А1 и А2А2 в открытом поле (ОП)

Генотип TAG 1A DRD2

Количество вертикальных стоек

Груминг

Уринация

общая

Центр ОП

Периферия ОП

Кол-во

эпизодов

Общее

время

сек

число

А11

29,97+3,54

 

1,72+0,54

28,25+3,00

5,87+0,48

14,62+4,05

0,31+0,12

А22

14,34+2,08

 

0,29+0,16

14,05+1,92

4,28+0,53

12,21+1,28

0,09+0.04

Уровень значимости p

 

<0,001

 

<0,01

 

<0,001

 

>0,05

 

>0,05

 

<0,05

Как следует из данных таблицы 2, у крыс А2А2 мы отметили уменьшение числа стоек как в центре (p<0,01) и на периферии (р< 0,001) по сравнению с крысами другой группы - А1А1. Общее количество стоек у крыс группы А2А2 уменьшено вдвое (p<0,001), что свидетельствует о значительно меньшей исследовательской деятельности этой группы крыс. Показатели груминга, как по времени, так и по числу эпизодов не различались между изучаемыми группами крыс. Крысы А2А2 имели меньшее количество уринаций (р<0,05). В целом, полученные результаты свидетельствуют о том, что крысы А2А2 меньше двигаются, значительно реже совершают стойки и чаще «замирают», пребывая в состоянии неподвижности.

  Результаты исследования поведения двух групп крыс (А1А1 и А2А2) выявили наличие большего по длительности латентного периода до первой амбуляции у крыс А2А2. Это послужило основанием для предположения о том, что у этой группы крыс существуют затруднения в афферентном синтезе раздражений, поступающих из внешней среды в условиях новой обстановки (открытое поле).

Эпилепсия является одним из наиболее распространенных неврологических заболеваний, имеет сложный полигенный характер и осложнена тем, что 30% пациентов резистентны к фармакотерапии. Много неясного в этиологии и патогенезе этого заболевания. Поэтому понимание биологических механизмов патогенеза и фармакорезистентности эпилепсии является актуальной задачей биологической психиатрии, невозможной без использования экспериментальных моделей [6].

Молекулярно-генетические исследования у грызунов с аудиогенными припадками немногочисленны. Недавно показано, что у крыс КМ отсутствуют определенные гипервариабельные фрагменты ДНК (маркеры, свойственные резистентным лабораторным животным), которые, вероятно, отражают структурные изменения в геноме и связаны с проявлением аудиогенного приступа [2]. Признак «чувствительность к звуку» используется для исследования механизма развития судорожных состояний. Линии мышей и крыс, обладающие аудиогенной чувствительностью, служат моделями эпилепсии человека. Аудиогенная эпилепсия относится к категории патологических состояний, которые провоцируются внешней стимуляцией, иначе говоря, рефлекторно.

Сравнение поведенческих показателей крыс А1А1 и А2А2 в тесте «открытое поле» позволило обратить внимание на выраженную неподвижность крыс А2А2 (превышающую по времени практически в 30 раз аналогичный показатель у А1А1). Неподвижность крыс группы А2А2 приводила к меньшей двигательной активности (количество пересеченных квадратов по периферии поля уменьшено вдвое по сравнению с крысами А1А1). Наблюдалось и резкое снижение исследовательской деятельности (количество стоек на периферии поля у крыс А2А2 уменьшено вдвое, а в центре - в семь раз).

Эти данные указывают, что у крыс, гомозиготных по аллелю А2 в локусе TAG 1A DRD2, вероятно, в связи с изменением (снижением порога чувствительности к акустическим сигналам) функционального состояния слухового анализатора, а вследствие этого и баланса полисенсорных взаимовлияний в центре их анализа - в миндалевидном комплексе, возникают затруднения в осуществлении афферентного анализа. В ранее опубликованной работе [4], посвященной особенностям структурной организации миндалевидного комплекса данных субпопуляций крыс, приведены доказательства правомерности этого предположения. Было показано, что удельная площадь комплекса ядер базолатеральной группировки миндалевидного комплекса больше у крыс А1А1 в обоих полушариях по сравнению с крысами А1А1. Базолатеральная группировка имеет обширные связи с различными областями новой, старой и межуточной коры, а также с ядерными центрами слухового и стато-кинетического анализаторов [1,7]. Вероятно, затруднения, возникающие на этапе афферентного синтеза, приводят к нарушению работы программирующих блоков в функциональной системе поведения и формированию определенных препятствий в реализации поступившей в организм информации из окружающей среды в виде локомоторных актов.

СПИСОК ЛИТЕРАТУРЫ:

  1. Акмаев И.Г., Калимуллина Л.Б. Миндалевидный комплекс мозга: функциональная морфология и нейроэндокринология. М.: Наука, 1993.272 с.
  2. Зорина З.А.., Полетаева И.И., Резникова Ж.B. Основы этологии и генетики поведения. М.: Высшая школа, 2002. 383c.
  3. Калимуллина Л.Б., Ахмадеев А.В., Бикбаев А.Ф.и др. Медицинская генетика, 2005, №5, с.198.
  4. Леушкина Н.Ф., Ахмадеев А.В., Калимуллина Л. Б. В сб. научных статей «Интегративная физиология», Уфа, БашГУ, с.48.
  5. Мидзяновская И.С., Кузнецова Г.Д., Туомисто Л. и др. // Нейрохимия, 2004, т.21, № 4, с.264.
  6. Нуца Н.А., Калуев А.В. Современная биологическая психиатрия: проблемы и перспективы. Нейронауки, 2008, №3, с.23.
  7. Чепурнов С.А., Чепурнова Н.Е. Миндалевидный комплекс мозга. М.: Из-во МГУ, 1981.- 267 с.
  8. Шуваев В.Т., Суворов Н.Ф. Базальные ганглии и поведение. CПб.: Наука, 2001. - 278 с.
  9. Hall C.S.// J.Comp. Psychol., 1934. V.18, N.3, p.385
  10. Kuznetsova G. D., Coenen A.M.L., van Luijtelaar E.L.M. In: The WagRij rat model of absence epilepsy: The Nijmegen - Moscow research. 2000, Nijmegen, NICI, 141 p.

Библиографическая ссылка

Леушкина Н.Ф., Калимуллина Л.Б. ГЕНЕТИКА ПОВЕДЕНИЯ: АССОЦИАЦИЯ ГЕНОТИПА ПО ЛОКУСУ TAG 1A DRD2 // Успехи современного естествознания. – 2008. – № 10. – С. 18-22;
URL: https://natural-sciences.ru/ru/article/view?id=10688 (дата обращения: 19.04.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674