Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

Физико - механические свойства поверхностных и приповерхностных слоев материалов является одним из важнейших факторов определяющих долговечность и надежность машин. Тщательно обработанная общеизвестными способами поверхность сопрягаемых деталей является носителем остаточных напряжений, усталостных макрои микротрещин, шаржированных зерен абразива и прочих дефектов. Для повышения прочности и износостойкости деталей используются методики обработки, улучшающие физические свойства, структуру и микротопологию поверхности.

Известны следующие классические способы улучшения качества поверхности, получившие распространение:

  • дробеструйная обработка, микротвердость поверхности увеличивается незначительно, поверхностная шероховатость практически не уменьшается, усталостная прочность увеличивается в 1.5 раза и более;
  • обкатывание шаром или роликом, микротвердость поверхности увеличивается на 40 60%, шероховатость снижается, ориентировочно, с 5 до 10 класса, обычно требуется несколько проходов инструмента по обрабатываемой детали, образуется наклеп значительной толщины;
  • дорнование, микротвердость поверхности увеличивается на 25 35%, шероховатость снижается, ориентировочно, с 5 до 9 11 класса, незначительный наклеп, до 1 мм ;
  • чеканка, микротвердость поверхности увеличивается на 20 70%, толщина наклепа может быть до 20 25 мм , усталостная прочность увеличивается на 50 100%, срок службы деталей увеличивается в 2 и более раза;
  • упрочнение взрывной волной, микротвердость поверхности увеличивается на 60 70%, толщина наклепа может быть до 40 50 мм , что недостижимо никакими другими методами, но применение связано с известными технологическими трудностями и не всегда возможно.

В настоящее время весьма перспективными представляются различные виды ультразвуковых обработок. Ультразвуковая обработка обычно применяется после чистовой токарной обработки. Ультразвуковой инструмент, помещается в специальные приспособления к токарным станкам. Под действием статического прижима, и вибрационной силы, создаваемой ультразвуковой системой, инструмент пластически деформирует и упрочняет поверхностный слой детали. Кроме того, увеличивается микротвердость, снимаются остаточные напряжения, сглаживаются неровности поверхности и, в итоге, возникает улучшенный поверхностный слой с регулярным характером микрорельефа. В результате:

  • микротвердость поверхности, в зависимости от исходной и вида обрабатываемого металла, возрастает на 30 300%;
  • шероховатость снижается  с 5 до 9 -14 класса, данное качество поверхности можно получать не только на термически обработанных и сырых сталях, но и на чугунах, на цветных и нержавеющих металлах и сплавах;
  • толщина наклепа может быть до 0.1 мм , в отдельных случаях возможно реализовать режим холодной проковки с толщиной наклепа до 15 20 мм;
  • предел контактной выносливости повышается на 10 20%;
  • отсутствие шаржированных в поверхность зерен абразива увеличивает до 2 раз срок службы сопряженных деталей;
  • регулярный микрорельеф повышает свойство удержания обработанной поверхностью масел и смазок;
  • регулярный микрорельеф дополнительно снижает износ при возвратно-поступательном характере движения относительно друг друга сопрягаемых деталей;
  • повышается коррозионная устойчивость обработанной поверхности.

В результате комплекса перечисленных свойств, детали машин, подвергнутые ультразвуковой обработке, имеют большую износостойкость, прочность и т.д., чем после шлифования, обкатывания шаром и многих других окончательных, финишных, способов обработки поверхности деталей. Отметим, что все эти технологии в классическом приложении энергозатратны и имеет низкую эффективность, хотя их и используют и разрабатывают в России (ООО «Северозападный центр ультразвуковых технологий», НИИ ТВЧ, группа компаний «РЭЛТЕК» и др. ) и за рубежом (ИТА НАН Белоруссии, «Newpower ultrasonic» Китай, «DMG» Германия, Международная компания, «Mazak» Япония и др. ).

В настоящее время наиболее перспективными представляются технологии, реализуемые при посредстве устройств авторезонансного резания и выглаживания материалов с  созданием методик по нанотехнологическому упрочнению поверхностных слоев. В настоящее время такие устройства, успешно испытаны и начитают внедряться. Параллельно ведется работа по их совершенствованию и универсализации.